Primary competition visual

UNICEF Arm 2030 Vision #1: Flood Prediction in Malawi

Helping Malawi
$10 000 USD
Challenge completed over 5 years ago
Forecast
1914 joined
484 active
Starti
Dec 02, 19
Closei
May 17, 20
Reveali
May 17, 20
Target variable
Help · 14 Dec 2019, 15:01 · edited 3 minutes later · 2

I have problem to understand target variable, I think Target variable should be rectangle where the flood has happened, not percentage of rectangle that was flooded, because if we consider so, the target variable didn't reflect neithier where nor when the flood happend.

What do you think ?

Discussion 2 answers

Hi AEL,

If the target has a value greater than zero, it is safe to assume that it was flooded, and if it has zero, it is safe to assume it wasn't flooded.

So, for a start, you can build a model to first check if the square was flooded, then pass that classification itself as a feature into your model to then get the percentage of the square that was flooded. In theory, it should correlate heavily with your target.

Hi AIchemi

I understand, I m talking about the use of that kind of information, didn't reflect neithier where nor when the flood happend.

flooded, not flooded, okay, but when will be flooded I guess useful ?