Primary competition visual

agriBORA Commodity Price Forecasting Challenge

Helping Kenya
€8 250 EUR
18 days left
Data analysis
GIS
Time-series
Forecasting
Nowcasting
604 joined
199 active
Starti
Nov 14, 25
Closei
Dec 27, 25
Reveali
Jan 13, 26
the code sharing for 0.542418754 lb score is as follows
Notebooks · 20 Nov 2025, 05:58 · 0

1.change shift(lag) into shift(lag**3)

for lag in [1, 2, 3]:    panel[f"lag{lag}"] = panel.groupby("county_norm")["kamis_smooth"].shift(lag**3)

2.change rolling(3, min_periods=1) into rolling(1, min_periods=1)

c["kamis_smooth"] = df["kamis_price"].rolling(1, min_periods=1).mean()

3.add a post to submission

submission["Target_RMSE"]=submission["Target_RMSE"]*0.98

for more information ,see the link:

https://mp.weixin.qq.com/s/hBH5moohQeGBBYh2OAsysA

Discussion 0 answers