Hello guys,
I tried to download the entire dataset locally using
load_dataset("tobiolatunji/afrispeech-200", "all", streaming=False)
The downloading and extracting phases succeeded; nevertheless, an error occurs at the "Generating train split" step and always at the 35,999 th sample. The full traceback is the following:
---------------------------------------------------------------------------
ArrowInvalid Traceback (most recent call last)
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/builder.py:1628, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1627 example = self.info.features.encode_example(record) if self.info.features is not None else record
-> 1628 writer.write(example, key)
1629 num_examples_progress_update += 1
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:488, in ArrowWriter.write(self, example, key, writer_batch_size)
486 self.hkey_record = []
--> 488 self.write_examples_on_file()
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:446, in ArrowWriter.write_examples_on_file(self)
442 batch_examples[col] = [
443 row[0][col].to_pylist()[0] if isinstance(row[0][col], (pa.Array, pa.ChunkedArray)) else row[0][col]
444 for row in self.current_examples
445 ]
--> 446 self.write_batch(batch_examples=batch_examples)
447 self.current_examples = []
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:555, in ArrowWriter.write_batch(self, batch_examples, writer_batch_size)
554 pa_table = pa.Table.from_arrays(arrays, schema=schema)
--> 555 self.write_table(pa_table, writer_batch_size)
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:567, in ArrowWriter.write_table(self, pa_table, writer_batch_size)
566 self._build_writer(inferred_schema=pa_table.schema)
--> 567 pa_table = pa_table.combine_chunks()
568 pa_table = table_cast(pa_table, self._schema)
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/pyarrow/table.pxi:3315, in pyarrow.lib.Table.combine_chunks()
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status()
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/pyarrow/error.pxi:100, in pyarrow.lib.check_status()
ArrowInvalid: offset overflow while concatenating arrays
During handling of the above exception, another exception occurred:
ArrowInvalid Traceback (most recent call last)
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/builder.py:1637, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1636 num_shards = shard_id + 1
-> 1637 num_examples, num_bytes = writer.finalize()
1638 writer.close()
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:582, in ArrowWriter.finalize(self, close_stream)
581 self.hkey_record = []
--> 582 self.write_examples_on_file()
583 # If schema is known, infer features even if no examples were written
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:446, in ArrowWriter.write_examples_on_file(self)
442 batch_examples[col] = [
443 row[0][col].to_pylist()[0] if isinstance(row[0][col], (pa.Array, pa.ChunkedArray)) else row[0][col]
444 for row in self.current_examples
445 ]
--> 446 self.write_batch(batch_examples=batch_examples)
447 self.current_examples = []
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:555, in ArrowWriter.write_batch(self, batch_examples, writer_batch_size)
554 pa_table = pa.Table.from_arrays(arrays, schema=schema)
--> 555 self.write_table(pa_table, writer_batch_size)
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/arrow_writer.py:567, in ArrowWriter.write_table(self, pa_table, writer_batch_size)
566 self._build_writer(inferred_schema=pa_table.schema)
--> 567 pa_table = pa_table.combine_chunks()
568 pa_table = table_cast(pa_table, self._schema)
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/pyarrow/table.pxi:3315, in pyarrow.lib.Table.combine_chunks()
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status()
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/pyarrow/error.pxi:100, in pyarrow.lib.check_status()
ArrowInvalid: offset overflow while concatenating arrays
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
Cell In[5], line 1
----> 1 dataset = datasets.load_dataset(
2 "tobiolatunji/afrispeech-200", "all", streaming=False,
3 )
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/load.py:1791, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
1788 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
1790 # Download and prepare data
-> 1791 builder_instance.download_and_prepare(
1792 download_config=download_config,
1793 download_mode=download_mode,
1794 verification_mode=verification_mode,
1795 try_from_hf_gcs=try_from_hf_gcs,
1796 num_proc=num_proc,
1797 storage_options=storage_options,
1798 )
1800 # Build dataset for splits
1801 keep_in_memory = (
1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
1803 )
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/builder.py:891, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
889 if num_proc is not None:
890 prepare_split_kwargs["num_proc"] = num_proc
--> 891 self._download_and_prepare(
892 dl_manager=dl_manager,
893 verification_mode=verification_mode,
894 **prepare_split_kwargs,
895 **download_and_prepare_kwargs,
896 )
897 # Sync info
898 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/builder.py:1651, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs)
1650 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):
-> 1651 super()._download_and_prepare(
1652 dl_manager,
1653 verification_mode,
1654 check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS
1655 or verification_mode == VerificationMode.ALL_CHECKS,
1656 **prepare_splits_kwargs,
1657 )
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/builder.py:986, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
982 split_dict.add(split_generator.split_info)
984 try:
985 # Prepare split will record examples associated to the split
--> 986 self._prepare_split(split_generator, **prepare_split_kwargs)
987 except OSError as e:
988 raise OSError(
989 "Cannot find data file. "
990 + (self.manual_download_instructions or "")
991 + "\nOriginal error:\n"
992 + str(e)
993 ) from None
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/builder.py:1490, in GeneratorBasedBuilder._prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)
1488 gen_kwargs = split_generator.gen_kwargs
1489 job_id = 0
-> 1490 for job_id, done, content in self._prepare_split_single(
1491 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
1492 ):
1493 if done:
1494 result = content
File ~/anaconda3/envs/torch/lib/python3.9/site-packages/datasets/builder.py:1646, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1644 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1645 e = e.__context__
-> 1646 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1648 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the datasetNB:
- I have more than enough space on my hard drive.
- I believe it is not a RAM memory issue since it did not get full during the execution of the code.
- I decided not to use the streaming mode because when I do so, it takes ~1h only to fetch/read the data before starting with the training loop. It results in a slow training process.
Any help would highly be appreciated.
Thanks.
If hard drive space is not a limitation, can you use the google drive data download method while we resolve this issue with the Huggingface team?
Sure, I did not think of it.
Thanks.